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We illustrate the diffusion limit of wall heat transfer in fluid–solid suspensions by considering small col-
loidal particles dilute in a liquid at rest. Because such particles are agitated by Brownian motion, their
self-diffusivity is modest, the fluid and solid phases share the same temperature, and mixture theory
should predict the effective suspension conductivity. We show how thermophoresis creates suspension
inhomogeneities, suggest ways to mitigate the latter with ultrasonic forcing, and examine consequences
on heat transfer. To inform a debate on nanofluids heat transfer, we show that anomalous conductivity
enhancements reported with hot-wire thermal conductimetry can be an experimental artifact of
thermophoretic migration along the temperature gradient or timing in the observations.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In Part I of this paper, we outlined a theory for the enhancement
of heat transfer at the wall of a vessel containing agitated spherical
grains suspended in a conductive fluid [1]. We distinguished two
asymptotic regimes, which we called the ‘‘exchange” and ‘‘diffu-
sion” limits. In the first, heat transfer is set by the volumetric heat
exchange rate between the two phases, and it may be further en-
hanced by particle-fluctuation-induced fluid thermal diffusion. In
Part II, we tested the theory in that limit with relatively dense sus-
pensions of millimetric spheres vigorously shaken in a box,
through which heat was transferred between a cold and a hot wall.
Part III now illustrates the diffusion limit by considering small
‘‘nanoparticles” dilute in a liquid at rest.

With few exceptions, dilute nanoparticle suspensions exhibit
higher effective conductivities keff than the base fluid kg [2,3],
and keff/kg grows linearly with the average solid volume fraction
�m. Although many such observations can be explained by homoge-
nization models inspired by Maxwell’s [4,5], there are cases,
mostly associated with small metal particles at low �m, for which
the heat transfer enhancement exceeds these predictions [6]. Sev-
eral mechanisms have been considered, including ballistic phonons
within grains [7], Brownian diffusion [8] and enhanced Brownian
diffusion [9,10], clustering [7,11,12] and highly anisotropic cluster-
ing [13], interfacial resistance through layering of liquid molecules
ll rights reserved.
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ge).
[7,14–16], near-field interactions [17], hyperbolic heat conduction
[18] and thermophoresis [19].

The objective of Part III is to outline the peculiar heat transfer
mechanisms that occur in the diffusion limit with small particles.
To that end, we derive and discuss governing equations for fluid–
solid suspensions at rest subject to thermophoresis, particle resus-
pension and ultrasonic forcing. Because thermophoresis creates
time-dependent inhomogeneities in the suspension, and because
anomalously high keff have arisen with hot-wire thermal conducti-
metry [6], while spectroscopic techniques have not reported such
enhancements [20,21], we also examine the performance of hot-
wires in an attempt to inform a current debate on the subject.
We begin by contrasting mechanisms of heat transfer in the ex-
change and diffusion limits.

2. Diffusion-limited conduction in uniform suspensions at
small temperature gradient

In this section, we contrast mechanisms of self-diffusive heat
transfer for large and small particles in a suspension with no aver-
age velocity, uniform solid volume fraction and vanishing thermal
temperature gradient. In Part I, we showed that particle velocity
fluctuations play a role in enhancing the effective suspension ther-
mal conductivity. Because particles seldom have enough time to
exchange heat directly with solid surfaces, the enhancement of
heat transfer that they create is a competition between two rate-
limiting processes, namely their ability to self-diffuse through
the suspension, and to exchange heat with the surrounding fluid.
These processes are arbitrated by a Damköhler second ratio
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Nomenclature

A132 Hamaker constant
B, C constants in Eq. (19)
cg, cs fluid, solid specific heats per mass
cw, cp wire, sheath specific heats per mass
Cd drag coefficient
d grain diameter
Ds, DT particle, Soret self-diffusivities
Ds–e Stokes–Einstein diffusivity
Du, Dm ultrasonic, settling diffusivities
ey, er wall normal, wire radial unit vectors
f ultrasonic frequency
F, Fu, Fv net, ultrasonic, van der Waals forces
g12 binary sphere pair distribution
hg, hs fluid, solid sensible mass enthalpies
ı ı2 = �1
I ultrasonic energy flux
j00g, j00s , J00 fluid, particle, resuspension fluxes
kb Boltzmann’s constant
kg, ks, ka fluid, solid, apparent conductivities
kcl, keff cluster, effective conductivities
kp, kw sheath, wire thermal conductivities
Kg, Ks, K mixture, solid, channel conductivities
L wall-to-wall distance, vessel size
L� relative length scale in Eq. (2)
‘, ‘s grain diffusion, Stokes lengths
m grain mass
M� excess or deficit of mass in Eq. (68)
n‘ number of adhered particle layers
n ultrasonic wave direction
N, N0 surface particle number densities
q, qg, qs Fourier fluxes in mixture, fluid, solid
q+, q� heat fluxes at hot, cold walls
_q heat rate supplied per wire length
r radial coordinate
rw, rp wire core, sheath outer radii
R� relative domain size around the wire
Rd hindered settling function in Eq. (34)
S ultrasound speed
t, tf time, period to solve Eqs. (61) and (62)
T, Tg, Ts, Tw mixture, fluid, solid, wire temperatures
Tm mixed-mean-temperature in Eq. (43)
T1, T+, T� ambient, cold, hot wall temperatures
u, v fluid, particle velocities
v, vb grain, Brownian diffusion speeds
vT, vu, vt thermophoretic, ultrasonic, settling vessels
v0i grain fluctuation velocity along i
y cartesian coordinate

Greek symbols
a suspension thermal diffusivity
ap, aw hot-wire sheath, wire thermal diffusivities
a1, b1 functions in Eq. (23)
b thermophoretic coefficient
c Euler’s constant
g0, g adhesion gaps
H granular temperature
i variable of integration
ks grain mean free path
l1, l2, l3, l4 functions in Eq. (23)
l fluid viscosity
m solid volume fraction
ma fraction of volume occupied by clusters
mcl solid volume fraction within a cluster
mc randomly jammed solid volume fraction
ms surface fraction of adhered particles
ns ks/kg

qg, qs, qw, qp fluid, solid, wire, sheath material densities
qc mean volumetric specific heat
ss, s viscous, adhesion relaxation times
x relative ultrasonic particle size in Eq. (22)
xv relative ultrasonic viscous length in Eq. (22)

Dimensionless groups
C� (qgcg)/(qscs)
Da Damköhler second ratio
Kn Knudsen number
Le, Le1 Brownian Lewis numbers
Nu particle Nusselt number
Pes ultrasonic Péclet number
Pr Prandtl number
St particle Stokes number
Cr dimensionless resuspension number
�h, h1 dimensionless temperatures
P 2ðqcÞ=ðqwcwÞ

Scripts
� dimensionless
� spatial average
+/� hot/cold walls
hi velocity distribution average
crit critical value
g, s fluid, solid
p, w sheath, wire core
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Da � ðKg=KsÞðLy=2Þ
tanhðLy=2Þ

; ð1Þ

with dimensionless length scale

Ly � L
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12mNu

kg

Kg
þ kg

Ks

� �s
: ð2Þ

In these expressions, Kg is the mixture conductivity, which, at
low values of the local solid volume fraction m, is well captured
by Maxwell’s model in terms of the ratio ns � ks/kg of the respective
material conductivities kg and ks of the pure fluid and solid [22],

Kg

kg
¼ ð2þ nsÞ þ 2mðns � 1Þ
ð2þ nsÞ � mðns � 1Þ ; ð3Þ

Ks is the conductivity of the agitated solid phase arising from
particle self-diffusion; L/d is the ratio of vessel size and particle
diameter; and Nu is the Nusselt number characterizing the heat ex-
change between a particle and the surrounding fluid. The rate-lim-
iting processes give rise to two asymptotic regimes.

In the first regime (Da ? 0), which we call the ‘‘exchange limit”,
solids agitation is so intense that the thermal temperatures of fluid
and solids are significantly different. In fact, it is the difference be-
tween these two temperatures that determines the enhancement
of keff through the volumetric rate of heat transfer that couples
the solid and fluid phases. In that limit, the magnitude of particle
agitation is too large to matter, unless it induces velocity fluctua-
tions in the fluid, thereby raising keff further through a mechanism
similar to turbulence. In Part II, we tested the theory in the ex-
change limit by conducting experiments with millimetric spheres
shaken in a box, for which keff/kg rose up to �20.

The other asymptotic regime is where particle agitation is more
modest and/or length scales are large (Da ?1). In this ‘‘diffusion
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limit,” the thermal temperature Tg of the fluid and its counterpart
Ts for the dispersed solid phase are equal, T = Tg = Ts, and, as we
showed in Part I, the effective conductivity is merely the sum of
the mixture conductivity and a contribution arising from the
self-diffusion of solids,

keff ¼ Kg þ Ks: ð4Þ

In fluid-particle systems with vanishing average velocity, agi-
tated particles self-diffuse through the suspension even without
a concentration gradient. This gives rise to a thermal conductivity
of the solid phase

Ks ¼ qsmcsDs; ð5Þ

where qs and cs are, respectively, the material density and specific
heat per mass of the solids. Because the temperatures of the two
phases are identical, the rate of heat exchange between the phases
is negligible, and thus the strength of that exchange does not matter
to the effective conductivity. In particular, the magnitude of the
Nusselt number in Eq. (2) is irrelevant to keff.

Because of their relatively small size (L/d� 1) and modest agi-
tation, colloidal ‘‘nanoparticles” belong to the diffusion limit. To-
gether with the surrounding fluid, they form a mixture at a
single thermal temperature with an effective conductivity >Kg. In
the two sub-sections that follow, we contrast their ability to pro-
duce a significant Ks with that of macroscopic, massive particles.

2.1. Massive particles

In Parts I and II, we considered ‘‘massive” grains characterized
by a high Stokes number St � ss

ffiffiffiffiffi
H
p

=do1, where ss = m/(3pdl)
is the particle viscous relaxation time, l is the fluid viscosity, and
m is the particle mass. Such massive grains are unaffected by fluid
velocity fluctuations. Instead, their dynamics is dominated by iner-
tia. In a dense ‘‘gas” composed of such granular hard spheres with
fluctuation velocity v0i in the cartesian direction i, agitation is mea-
sured with the ‘‘granular temperature” H � ð1=3Þv0iv0i that is analo-
gous to the translational temperature introduced in the kinetic
theory. Note that H bears no relation to the usual thermal temper-
ature of the particles, which we denote with the distinct symbol Ts.
For nearly elastic, massive granular solids, this agitation gives rise
to a self-diffusion with coefficient

Ds ¼
d
ffiffiffiffiffi
H
p

ð9
ffiffiffiffi
p
p
Þmg12

1
1þ 2Kn

� �
; ð6Þ

where g12(m) is the Carnahan and Starling pair distribution function
[23]

g12 ¼
2� m

2ð1� mÞ3
; ð7Þ

and the term in parentheses is a correction for high Knudsen num-
ber Kn = ks/L [24,25] that is significant when the granular mean free
path ks ¼ d=½6

ffiffiffi
2
p

mg12� between consecutive impacts is on the order
of the vessel size L. Thus, at large L/d and small m, one recovers the
classical scaling for the self-diffusion of a gas of hard spheres,

Ds � ‘v; ð8Þ

where in this case, the characteristic diffusion length is the mean
free path ‘ � ks and the diffusion velocity v �

ffiffiffiffiffi
H
p

. The Knudsen cor-
rection in Eq. (6) guarantees that Ks vanishes as m ? 0 in vessels of a
finite size. However, with small enough particles or large vessels, it
is superfluous, Kn �0. For large enough L/d, and for small m such that
g12 � 1, Eqs. (5) and (6) predict that the thermal conductivity Ks of
the granular phase is independent of m, a fact related to Maxwell’s
1860 paradox of a viscosity independent of pressure [25].
A consequence is that, for massive granular solids in the diffu-
sion limit, agitation can enhance keff at very low volume fractions.
In fact, upon combining Eqs. (3)–(7), the series expansion at van-
ishing m

keff

kg
¼ 1þ 3m

ns � 1
2þ ns

� �
þ

ffiffiffi
2
p L

d

� �
Prs þ oðL=dÞ1=2

� �
þ oðm2Þ ð9Þ

reveals that, as massive agitated grains are first introduced in a
fluid, (keff/kg) rises rapidly with m at a steep slope � 3

ffiffiffi
2
p
ðL=dÞPrs

to the more gentle linear variation

keff

kg
¼ 1þ 3m

ns � 1
2þ ns

� �
þ Prs þ oðm2Þ; ð10Þ

in which the dependence on m is solely attributed to Kg/kg, as soon as
m exceeds the small critical value 1=ð3

ffiffiffi
2
p

L=dÞ. In Eqs. (9) and (10),
Prs � d

ffiffiffiffiffi
H
p

=½9
ffiffiffiffi
p
p
ðkg=qscsÞ� resembles a Prandtl number. For parti-

cles of high material conductivity relative to the fluid’s (ns� 1),
the slope of keff/kg versus m is 3.

2.2. Dilute colloidal suspensions

The thermal diffusivity of small colloidal particles dilute in a
viscous fluid has markedly distinct physics. The chief reason is that
these particles are also subject to forces exerted on their surface,
such as Stokes drag or Brownian impact, in addition to volume
forces, such as inertia. They are also subject to thermophoresis,
whereby a temperature gradient rT induces particle migration
and hydrodynamic diffusion, thus coupling particle motion to the
temperature field. In this section, we restrict attention to temper-
ature gradients that are too small to create significant thermopho-
resis. We revisit this assumption in the next section.

One important difference between massive grain and particles
of low Stokes numbers is that the latter’s diffusion length in Eq.
(8) no longer depends on m. Instead, this length is now the Stokes
viscous relaxation distance

‘s � sshv2
bi

1=2 ð11Þ

to a sudden jolt of the particle velocity to the rms diffusion velocity
vb � hv2

bi
1=2, where hi denotes averaging over the velocity distribu-

tion, and vb is the instantaneous fluctuation velocity of the Brownian
particle in the fluid at rest. For such a particle of mass m at equilib-
rium with the surrounding liquid, ðm=2Þhv2

bi ¼ ð3=2ÞkbT , where
kb = 1.38 � 10�23 J/K is Boltzmann’s constant. To within a constant
of o(1), the product ‘svb is the Stokes–Einstein diffusion [26]

Ds—e ¼
kbT

3pld
; ð12Þ

which is substituted for Ds in Eq. (5) to predict the corresponding
conductivity of the particle phase. By analogy with Eq. (6), Cohen
and de Schepper [27] proposed a simple heuristic correction of
Eq. (12) for arbitrary volume fractions, Ds–e = (kbT)/[3pldg12(m)],
capturing reductions in Ds–e at high m associated with ‘‘cage” diffu-
sion. Because Ds–e is nearly independent of m when the suspension is
dilute, Ks / m. In the limit where rT ? 0, the conductivity of the di-
lute particle phase is

lim
rT!0

Ks

kg

� �
¼ qscs

kg

kbT
3pdl

m: ð13Þ

Consequently, with rT ? 0 andrm = 0, Ks is small at low m, and
it constitutes a negligible enhancement over the fluid conductivity:
consider for example 6 nm copper nanoparticles suspended in eth-
ylene glycol at �300 K, which have keff > Kg [6]. For such suspen-
sion with qs = 8930 kg/m3, cs = 385 J/kg K, ks = 401 J/m K, liquid
density qg = 1114 kg/m3, liquid specific heat per mass cg = 2415 J/
kg K, kg = 0.252 J/m K, and l = 0.0157 kg/m s, Eq. (13) predicts a
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ratio Ks/kg � 10�4m� 1, "m. In fact, Evans et al. [8] and Vladkov and
Barrat [15] recently showed that the thermal diffusivity induced by
Brownian motion is indeed negligible in most cases, and that it
cannot explain the anomalous enhancement of keff observed with
certain nanofluids [6]. Further, as we mentioned earlier, because
keff is independent of Nu in the diffusion limit, nanoparticle sus-
pensions cannot benefit from high particle-fluid heat exchange
rates either [9,10,19,28].

Explanations for the observed enhancement of keff must be
found elsewhere. Buongiorno [19] dismissed diffusiophoresis,
Magnus forces, and settling under gravity. Free convection is also
negligible at the small scale of typical devices unless transient
measurements take too long [29]. Instead, Buongiorno suggested
that thermophoretic transport may play a role at finite rT. How-
ever, because thermophoresis is driven by a temperature gradient
largely determined by system geometry, its significance is not
universal.

In this paper, we examine the role of thermophoresis for
two systems. First, we analyze in the next section the semi-
infinite channel with two parallel thermal walls considered in
Part I. We derive governing equations for mass and energy and
show that thermophoresis can induce significant particle migra-
tion. We suggest how the resulting inhomogeneities could be mit-
igated by applying ultrasonic forcing. Second, we consider the
temperature field produced by hot-wire thermal conductimetry,
which is employed in most nanofluids experiments. We assess
the role of thermophoresis in clearing (or densifying) the region
near the wire and in possibly resuspending particles previously ad-
hered to it.

3. Particle migration at finite temperature gradient

A major difference between the heat transfer with macroscopic
grains and small colloidal particles is that thermophoresis can
gradually upset the distribution of solids in vessels where small
particles are subject to a finiterT. To illustrate this, we now exam-
ine how thermophoretic inhomogeneities affect heat transfer in a
generic channel similar to that of Part I. We also calculate whether
ultrasounds could mitigate the formation of such inhomogeneities
by opposing the thermophoretic force in a manner similar to ultra-
sonic particle separation [30,31].

3.1. Thermophoresis in liquids

In a dilute suspension, temperature gradients can drive a ther-
mophoretic flux of particles. Upon interpreting their experiments
with �1 lm latex spheres in water and n-hexane, McNab and Mei-
sen [32] proposed a semi-empirical expression for the thermopho-
retic velocity by extending the gas–particle calculation of Epstein
[33] to liquid–particle systems,

vT ¼ �b
l
qg

rT
T
; ð14Þ

for which they wrote

b ’ 0:26
kg

2kg þ ks

� �
> 0; ð15Þ

thus implying that such ‘‘positive” thermophoresis draws particles
toward cold regions of the liquid. The coefficient in Eq. (15) is re-
lated to the Soret thermal diffusivity DT using b � TDTqg/l. Giddings
et al. [34] warned that this fit of b, while suitable for neutral
spheres, may seriously under-estimate the thermophoretic velocity
of metal particles in a liquid. Effectively, they suggested that the va-
lue of ks to substitute in Eq. (15) could be much smaller than the ac-
tual material conductivity of the metal particles depending on the
form of their surface potential energy distribution.
To interpret her experiments on nanoparticles migration in a
solvent using the beam deflection technique [35], Putnam [36] re-
viewed current theories and available data for thermophoresis in
liquids. She noted that thermophoretic diffusion can be ‘‘negative”
(b < 0) for aqueous suspensions of charged particles at low ionic
strengths [37] and ferro-fluids [38], exhibit temperature depen-
dence [39–41], and vary with volume fraction [40] and ionic con-
centrations [39]. As we will discuss in Section 4, the possibility of
negative thermophoresis, even with relatively low jbj, can have a
profound influence on the apparent thermal conductivity recorded
by hot-wire conductimetry.

Bringuier [42] recently warned that the concept of a thermoph-
oretic velocity may be misleading, noting in particular how the
temperature dependence of the thermophoretic mobility can re-
verse the sign of b. Nonetheless, Eq. (14) remains useful, so long
as experimental data is interpreted in this framework [36,42]. In
this paper, for simplicity, we take b to be invariant for each system.
If instead, for example, temperature varies considerably, it would
be relatively straightforward to capture more complex effects by
letting b vary in the model [41]. We also ignore electrophoresis,
which may be induced if electricity is the source of heat, and if par-
ticles have a high f-potential [36].

Because the thermophoretic and Stokes drag forces are both
proportional to d, the thermophoretic terminal velocity in Eq.
(14) has no explicit dependence on particle diameter. Consistent
with this simple view, the data of Putnam and Cahill [36,39] and
Vigolo, et al. [43] suggest that b is independent of d. This does
not mean that particles of any size would reach vT. Macroscopic
particles, for example, if subject to fluid inertia at a drag coefficient
Cd, would reach vT ’ 2

ffiffiffi
6
p
½l=ðqgdÞ�ðbd=CdÞ1=2jr ln Tj1=2 / 1=d1=2,

and would generally experience negligible thermophoresis.
As long as suspensions remain dilute, we need not account for

the dependence of vT in Eq. (14) on solid volume fraction. However,
if intense thermophoretic migration produces regions of high m,
then a first approximation to generalize Eq. (14) might be to sub-
stitute the mixture viscosity lexp(4.58m) provided by Happel
and Brenner [44] for l. Ning et al. [40] provide recent experimental
insight on the role of m.

3.2. Ultrasonic forcing

Following the works of King [45] and Yosioka and Kawasima
[46] for the acoustic forcing of rigid and compressible spheres in
an inviscid fluid, Doinikov calculated the acoustic ‘‘pressure” (i.e.,
force) on rigid [47] and compressible spheres [48] by progressive
and stationary sound waves of frequency f and acoustic energy flux
I in a viscous fluid with a sound speed S. Remarkably, while King
[45] showed that particles would migrate in the direction of the
sound wave for an inviscid fluid, Doinikov calculated that fluid vis-
cosity makes particles travel against the wave [47]. In the limit
where pf d/S� d[pfqg/(2l)]1/2� 1, which applies to nanoparticle
suspensions, Doinikov simplified his more general expressions
for the ultrasonic force Fu on a sphere created by a progressive
wave emanating from a transducer of outward normal n,

Fu ¼ �
11
30

p5=2 qs

qg
� 1

 !
If 3=2d4

S2ðl=qgÞ
1=2 n: ð16Þ

In dilute suspensions, nanoparticles subject to Stokes, ultra-
sonic and thermophoretic forces then reach a terminal velocity

vt ¼ vT þ vu ¼ �
l
qg

br ln T � 11
90

p3=2 qs

qg
� 1

 !
If 3=2d3q1=2

g

S2l3=2
n: ð17Þ

Thus, positive thermophoresis can be thwarted by applying a
progressive sound wave in a direction n against the temperature
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2
p
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vs. x ’ pfd/S for a homogeneous, isothermal suspension of, for example, copper
nanoparticles in ethylene glycol (S = 1660 m/s) at m = 0.01 and T ¼ 300 K with
ultrasonic forcing at a frequency f = 20 MHz and energy flux I = 104 W/m2 in a
channel with L = 0.001 m. In this example, the lowest x represents 10 nm particles.
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gradient rT. In principle, this can be achieved if the ultrasonic
transducer coincides with the hot wall. Negative thermophoresis
would requires the opposite arrangement.

3.3. Diffusion

In a uniform temperature gradient aligned with n, the ther-
mophoretic and ultrasonic forces act as a net effective settling
force similar to gravity. In this case, the particle mass diffusion flux
has three components. The first arises from Brownian motion with
diffusivity Ds–e given by Eq. (12). The second is induced by local
fluctuations in solid volume fraction resulting from the net advec-
tion of particles driven at the settling velocity vt. A paradox with
the diffusion of non-colloidal particles settling under gravity is that
the resulting diffusivity Dm should, in theory, diverge with the size
of the vessel containing the sedimenting suspension [49–53], de-
spite experimental evidence to the contrary [54,55]. Using Lat-
tice–Boltzmann numerical simulations, Nguyen and Ladd [56]
suggested that polydispersity can provide a mechanism for the
screening of the long-range interactions that cause this divergence.
On the other hand, Mucha and Brenner [57] suggested a resolution
of the paradox by introducing a hydrodynamic settling diffusivity
that depends on the local solid volume fraction, as well as its
gradient,

Dm ¼ Ljvtjfm½m; jLrmj; L=d�; ð18Þ

where the function

fm½m; jLrmj; L=d� � C
m1=2ð2L=dÞ1=2 if jrmj 6 rmjcrit

B3=2 d
2L

� �2=5 m4=5

jLrmj3=5 otherwise:

8<
: ð19Þ

Mucha and Brenner [57] fitted B ’ 1/2 and C ’ 1 to numerical
simulations and wrote

jrmjcrit ¼ B
m1=2

L
d

2L

� �3=2

: ð20Þ

Because these equations pertain to settling forces aligned with
gravity, they may be valid for unidirectional thermophoretic and/
or ultrasonic forces. In particular, they might apply to the channel
bounded by two infinite, parallel, flat, possibly sonified thermal
walls that we consider in this section. As we later show, for prac-
tical values of rT 6¼ 0, the settling diffusivity in Eq. (18) can dom-
inate its Brownian counterpart. Therefore we expect that, although
Dm was originally derived for non-colloidal spheres, it may be
relevant to nanoparticle suspensions as well. Unlike its Stokes-Ein-
stein counterpart in Eq. (13), it also contributes to the particle-
phase conductivity given by Eq. (5). At practical values of rT, the
resulting magnitude of Ks may no longer be negligible. However,
as we shall see, such Ks is only significant for short times.

The third diffusivity Du possibly arises from particle agitation
induced by ultrasounds. We estimate its magnitude by analogy
with Eqs. (8), (11) and (12),

Du �
1
3
sshv2

ui; ð21Þ

where

hv2
ui

1=2 ¼
qg

qs

� �
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IS

qg d2f 2

s
Lðx;xvÞ ð22Þ

is the rms particle velocity fluctuation induced by a plane ultrasonic
wave. In the first approximation, Doinikov [47] calculated

Lðx; xvÞ ¼ jj1ðxÞ þ a1h1ðxÞ þ 2b1h1ðxvÞj; ð23Þ

where j1(x) = (sinx/x2) � cosx/x is the spherical Bessel function
of the first kind and order 1, h1(x) = �(x + ı)exp(ıx)/x2 is a spher-
ical Hankel function of the first kind and order 1, a1(x;xv) �
�[l1l3 + 2(1 � qg/qs)2j1(x)h1(xv)]/l4, b1(x;xv) � (1 � qg/qs)
[l1h1(x) � l2j1(x)]/l4, l1 ¼ ð1� qg=qsÞj1ðxÞ �xj01ðxÞ, l2 ¼ ð1�
qg=qsÞh1ðxÞ �xh01ðxÞ, l3 ¼ ð1� 2qg=qsÞh1ðxvÞ þxvh01ðxvÞ, l4 =
l2l3 + 2(1 � qg/qs)2h1(x)h1(xv), primes denote the first derivative,
and, to a good approximation for most suspensions, x ’ pfd/S an-
dxv ’x1/2[dSqg/(4l)]1/2(1 + ı) with ı2 = �1.

Fig. 1 compares the magnitudes of Ds–e, Du and Dm for typical
homogeneous (rm = 0) and isothermal (rT = 0) suspensions in a
small vessel (no thermophoresis). In that figure, the abscissa is
the particle diameter made dimensionless with ultrasonic fre-
quency and sound speed. The lowest x for these curves corre-
sponds to small nanoparticles. The largest represent relatively big
microparticles. Because Du� Dm, "x, we can ignore the direct con-
tribution Du of the ultrasonic fluctuation velocity to the overall dif-
fusivity. A practical consequence is that it would be difficult to
augment the solid-phase conductivity Ks in Eq. (5) by manipulating
Du using ultrasonic particle agitation. In other words, unlike the
macroscopic grains of Parts I and II [1], nanoparticles cannot be
agitated to raise Ks appreciably without inducing particle migra-
tion. Such migration can be driven by ultrasounds and/or thermo-
phoresis. If the latter prevails (I = 0, rT 6¼ 0), the early stages in
which the suspension is still nearly homogeneous (rm ’ 0) across
two walls with temperature difference DT can exhibit a thermoph-
oretic settling diffusivity Dm � ðl=qgÞbCm1=2ð2L=dÞðDT=TÞ � Ds—e,
which, as we shall see after analyzing particle migration, could re-
sult in significant, but ephemeral, values of Ks if thermophoresis is
strong enough.

3.4. Governing equations

We now write the thermal governing equations and apply these
to a channel between two parallel plates containing a suspension
globally at rest. This derivation complements Buongiorno’s, who
treated the mixture as a single phase [19]. In contrast, because dif-
fusion and advection of the dispersed particles both induce reverse
fluxes in the liquid, we distinguish the mass balances of the dis-
persed and continuous phases separately. For the liquid, the bal-
ance is

qg
oð1� mÞ

ot
þ qgr 	 ½ð1� mÞu� þ r 	 j00g ¼ 0 ð24Þ
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and for the solids,

qs
om
ot
þ qsr 	 ½mv� þ r 	 j00s ¼ 0; ð25Þ

where u and v represent the mean velocities of liquid and solids,
respectively. The total particle mass diffusion is

j00s ¼ �qsDsrm; ð26Þ

where Ds = Ds–e + Dm + Du. In a mixture at rest, such diffusion in-
duces a reverse mass flux of liquid j00g. Because particles and liquid
are incompressible, the two corresponding volume fluxes balance,

ðj00s=qsÞ þ ðj
00
g=qgÞ ¼ 0: ð27Þ

Adding Eqs. (24) and (25), and using Eq. (27), we find
r 	 [(1 � m)u + mv] = 0. Because neither phase can penetrate the
walls, u = v = 0 there, and Eq. (27) integrates to

ð1� mÞuþ mv ¼ 0: ð28Þ

The balance of sensible energy of the liquid is

qg
o

ot
½ð1� mÞhg� þ qgr 	 ½ð1� mÞhgu� þ r 	 ðhgj00gÞ þ r 	 qg ¼ 0;

ð29Þ

and for the particles it is

qs
o

ot
½mhs� þ qsr 	 ½mhsv� þ r 	 ðhsj00s Þ þ r 	 qs ¼ 0: ð30Þ

In these equations, hg and hs are the sensible enthalpies per unit
mass of liquid and solid, respectively; qg = �KgrT and qs = �KsrT
are the Fourier heat fluxes of the two phases sharing the common
temperature T in the diffusion limit. Upon expanding the first two
r-terms in Eqs. (29) and (30), simplifying the result using Eqs. (24)
and (25), substituting the relation between u and v in Eq. (28),
using ohg/oT � cg and ohs/oT � cs, and adding the resulting equa-
tions for the solid and liquid phases, we find

qc
oT
ot
¼ ðqscs � qgcgÞ½�mv 	 rT þ Dsrm 	 rT� þ r 	 ½ðKg þ KsÞrT�;

ð31Þ

where

qc � qscsmþ qgcgð1� mÞ ð32Þ

is the mixture specific heat per unit volume and Ks = mqscsDs from
Eq. (5).

Note that we ignored the term Ds(rm 	 rT) in Parts I and II [1].
In Part I, we did so because m was assumed uniform. In Part II,
although gravity produced a significant vertical gradient of volume
fraction in the vibrated box, its direction was perpendicular to the
horizontal temperature gradient, and thus Ds(rm 	 rT) likely van-
ished as well.

Our result in Eq. (31) differs from Buongiorno’s [19] in the addi-
tional factor (qscs � qgcg), which arises from the reverse fluid flow
induced by the mean solids velocity. It is interesting to note that
this factor is positive for suspensions of iron (qs = 7870 kg/m3,
cs = 447 J/kg K) and copper in ethylene glycol (EG), while it is neg-
ative for suspension of Al2O3 (qs = 3690 kg/m3, cs = 880 J/kg K) in
water (qg = 1000 kg/m3, cg = 4179 J/kg K). Because Cu/EG and Fe/
EG exhibited anomalously high apparent conductivities, and
Al2O3 did not, Eq. (31) suggests at first glance that the anomaly
could be related to some kind of particle flux, including thermo-
phoresis. However, as we shall calculate later, the term
/(qscs � qgcg) in Eq. (31) is small relative to the conduction term
involving (Kg + Ks).

We now apply Eqs. (25) and (31) to a channel bound by two
parallel thermal planes separated by the distance L and maintained
at the respective temperatures T± at y = ±L/2, where y is the coordi-
nate perpendicular to the plates with origin at the center of the
channel and pointing to the hot wall. As we shall later confirm,
the Stokes relaxation time ss is several orders of magnitude smaller
than hydrodynamic or heat transfer times scales. Therefore, in the
mixture at rest, we equate the solid velocity to the terminal veloc-
ity of Eq. (17) for an isolated particle, suitably corrected for hin-
dered settling at other than vanishing m,

v ¼ vt=Rd: ð33Þ

We adopt the expression of Koch and Sangani [58], who deter-
mined Rd(m) from numerical simulations. For 0 < m < 0.4, they found

Rd ¼
1þ 3ðm=2Þ1=2 þ ð135=64Þm ln mþ 17:14m

1þ 0:681m� 8:48m2 þ 8:16m3 ð34Þ

for m P 0.4, they invoked Carman’s empirical correlation [59]

Rd ¼
10m
ð1� mÞ3

þ 0:7 ð35Þ

to which they added the constant 0.7 to match Eqs. (34) and (35) at
m = 0.4.

Dimensionless variables and parameters are y� � y/L,
Ty � ðT � TÞ=DT with T � ðTþ þ T�Þ=2 and DT � (T+ � T�),
ty � tðKg=qcÞ=L2, wall flux qy � qL=½KgDT�, conductivities ky � k=Kg

and diffusivities Dy � D=ðKg=qcÞ, where the overbar denotes a
quantity evaluated at the average solid volume fraction �m. The
dimensionless governing equations are, for particle mass,

om
oty
¼ o

oyy
ðmbPr=RdÞ
ðTy þ �hÞ

oTy

oyy

" #
þ ðey 	 nÞPes

oðm=RdÞ
oyy

þ o

oyy
Dys

om
oyy

� �
;

ð36Þ

and for sensible energy,

½mþ ð1� mÞCy� oTy

oty
¼ ð1� CyÞ ðbPrm=RdÞ

ðTy þ �hÞ
oTy

oyy

 !2
8<
:

þðey 	 nÞðm=RdÞPes
oTy

oyy
þ Dys

om
oyy

oTy

oyy

)

þ ½�mþ ð1� �mÞCy� o

oyy
ðKyg þ KysÞ

oTy

oyy

" #
; ð37Þ

where, using Eqs. (5) and (32),

Kys ¼
mDys

½�mþ Cyð1� �mÞ�
ð38Þ

with Dys ¼ Leð1þ Ty=�hÞ þ Dym þ Dyu. In this geometry, the dimension-
less settling diffusivity is

Dym ¼
bPr

ðTy þ �hÞ
oTy

oyy
þ Pesðey 	 nÞ

					
					fm m;

om
oyy

;
L
d

� �
: ð39Þ

As Fig. 1 showed, we can neglect the direct contribution of
ultrasounds to the particle diffusivity

Dyu ¼
Pr

6p2

q2
gIS

qsl2f 2

 !
L2; ð40Þ

which is always � Dym, and ignore the dimensionless parameters
therefrom. We also assume that the ultrasonic transducer normal
n is either pointed along the unit vector ey in the y-direction, or
against it. Then for example, if (ey 	 n) = � 1, the ultrasonic wave
acts against the thermophoretic gradient when T+ > T� and b > 0.

Nine dimensionless numbers arise from Eqs. (36)–(39). They
are: the average solid volume fraction �m, the relative channel width
L/d, the conductivity ratio ns (or the slope o(Kg/kg)/om) specifying
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variations of the mixture conductivity with m, the mixture Prandtl
number Pr � l=ðqg �aÞ with �a � Kg=qc, the ratio C� � (qgcg)/(qscs) of
specific heats per unit volume of the fluid and particle material, a
Lewis number Le � kbT=ð3pld�aÞ characterizing Brownian diffu-
sion, the coefficient b in Eq. (15) gauging the strength of thermo-
phoresis, and the dimensionless ambient temperature �h � T=DT;
the dimensionless number characterizing ultrasonic forcing in
the thermal problem is a Péclet number Pes � jvujL=ðKg=qcÞ, where
vu is the ultrasonic terminal velocity in Eq. (17). For simplicity, we
ignore sound attenuation in this problem. Thicker channels or
dense suspensions could instead exhibit a diminishing local value
of Pes [60]. In dimensionless form, the Stokes relaxation time
sys ¼ ðqs=qgÞðd=LÞ2=ð18PrÞ needed to reach the terminal velocity
in Eq. (33) is �1 for any practical condition involving
nanoparticles.

Assuming Dyu � Dym, we solve Eqs. (36) and (37) subject to an ini-
tial homogeneous suspension with linear temperature profile,
m ¼ �m and T� = y�, and to the boundary conditions at y� = ±1/2

Le 1þ Ty

�h

 !
þ Dym

" #
om
oyy
þ ðmbPr=RdÞ
ð�hþ TyÞ

oTy

oyy
þ ðey 	 nÞ

m
Rd

Pes ¼ 0; ð41Þ

which reflect the absence of a particle flux through the walls, and T�

= ±1/2 at y� = ±1/2, using Matlab’s pdepe routine. The latter auto-
matically adjusts the time step for optimum stability. Because
Eqs. (36) and (37) cannot guarantee that m remains within the phys-
ical interval 0 6 m < mc, where mc is the volume fraction of a ran-
domly jammed packing [61], we occasionally (but rarely) enforce
m 2 [0,mc[ in the following way: if at a point the numerical algorithm
finds a value of m < 0, it substitutes m = 0 and om/or� = 0 in calcula-
tions involving that point. Similarly, if m > mc, it enforces m = mc and
om/or� = 0.

3.5. Thermophoretic migration

As Fig. 2 shows for conditions where settling diffusivity domi-
nates its Brownian counterpart, positive thermophoresis causes
small particles to congregate near the cold wall. Gharagozloo,
et al. [62] recently observed such migration using an infrared
microscope with aluminum oxide nanoparticles suspended by
deionized water in a parallel channel with L = 500 lm and �h ’ 8.
This migration makes the mixture conductivity inhomogeneous.
Without ultrasonic forcing to counteract thermophoresis, Kg grad-
ually drifts toward the clear fluid conductivity at the hot wall,
while increasing at the cold wall. To assess consequences of this
imbalance in mixture conductivity, we write the global unsteady
energy balance in the channel,

d
dt

Z þL=2

y¼�L=2
½qsmhs þ qgð1� mÞhg�dy ¼ �qþ þ q�; ð42Þ

where q± < 0 are wall heat fluxes at y = ±L/2. We then define the
mixed-mean temperature

Tm � T �
Z þL=2

y¼�L=2
½qscsmþ qgcgð1� mÞ�ðT � TÞdy



Z þL=2

y¼�L=2
½qscsmþ qgcgð1� mÞ�dy:

Assuming that specific heats vary little across the channel, we
write hs;g ’ �hs;g þ cs;gðT � TÞ, substitute in Eq. (42), and write the
result in dimensionless form

dTym
dty
’ �qyþ þ qy�: ð44Þ

Thus, the rate of change of Tym represents the net gain (or loss) of
sensible energy in the channel. Fig. 3 plots the time-history of Tym
for conditions of Fig. 2. Starting from a homogeneous suspension
with zero mean dimensionless temperature, particle migration
causes a greater escape of energy at the cold wall than the corre-
sponding input at the hot wall, 0 < �q+ < �q�, thus reducing Tym.
Eventually, particles reside mostly near the cold wall (t� > 400),
Tym is invariant, and thermal fluxes at both walls return to balance.
At this steady state, the temperature profile is everywhere beneath
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the linear profile imposed initially in the homogeneous suspension
(inset, Fig. 3). Such imbalances of mass and temperature arise fas-
ter with greater values of b, which are typically exhibited by solids
of relatively low conductivity.

Because, as the inset of Fig. 3 shows, oT�/oy� ’ +1, and because
jTyjK 1=2� �h, thermophoresis is set by the group bPr=�h that ap-
pears in Eqs. (36), (37), (39) and (41). In particular, it is stronger
when the mean temperature gradient is high or, equivalently,
when �h is low. The left axis of Fig. 4 shows how much time is
needed to reach a steady Tym for several values of �h (other quantities
reach a steady-state in roughly the same time). The right axis
shows the corresponding maximum value of the solid volume frac-
tion m�, which, in the absence of ultrasonic forcing and b > 0, occurs
at the cold wall. In the absence of ultrasounds, the relative strength
of the settling and Brownian diffusivities is

Dm

Ds—e
¼ jbjPr=�h

Leð1þ Ty=�hÞ2
fm

oTy

oyy

					
					 ’ jbjPr=�h

Le
fm; ð45Þ

which is governed by the ratio ðjbjPr=�hÞ=Le. As Fig. 4 shows, for low
temperature gradients or weak thermophoresis with Le � bPr=�h and
b > 0, Brownian diffusion counteracts the inexorable settling of par-
ticles near the cold wall, and the steady value of m� at the cold wall
satisfies �mK m� < mc . In contrast, if Le� bPr=�h, Brownian diffusion is
negligible and particles drift to the cold wall with m�? mc. During
this process, the settling diffusion produces a particle-phase con-
ductivity, which is calculated by substituting Dm in Eq. (5), and is
showed as a dashed line measured on the right axis of Fig. 4. For
conditions of Fig. 2 at the nominal thermophoretic coefficient
b = 1.6 � 10�4, this conductivity is small, Kys ¼ Ks=Kg ’ 2� 10�3, so
settling diffusion adds little to Kg. If however, as Giddings et al. sug-
gested [34], metal nanoparticles effectively possess a much higher
b ’ 3.5 � 10�2 commensurate with silica particles, then Kys ’ 0:4,
thus constituting a significant enhancement over Kyg ¼ Kg=Kg ’ 1.

However, this enhanced settling conductivity, which occurs
shortly after the thermal temperature gradient is imposed, does
not persist long throughout the channel, as positive thermophore-
sis quickly sweeps solids away from the hot wall. For this reason,
we call this ‘‘flash” conductivity. To illustrate its ephemeral exis-
tence, we calculate the dimensionless average channel conductiv-
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Fig. 4. Left axis: dimensionless time for jTym j to reach 99% of its steady, long-term
value; right axis: long-time solid volume fraction at the cold wall (y� = �1/2, t ?1)
and ‘‘flash” particle-phase conductivity Kys � Ks=Kg vs. bPr=�h (an example of Tym vs.
time appears in Fig. 3). Calculations were carried out by varying �h at fixed Pr =146
and for b = 1.6 � 10�4, 3.3 � 10�4, 6.5 � 10�4 and 1.3 � 10�3 without ultrasonic
forcing, Pes = 0. Values of �m, Le, ns, C�, and L/d, see Fig. 2. The vertical dashed line
marks bPr=�h ¼ Le, to the right of which settling diffusivity increasingly dominates
its Brownian counterpart.
ity by integrating contributions of elementary slices of width dy�

to the overall thermal resistance of the channel,

Ky �
Z þ1=2

yy¼�1=2

Kg

Kg þ Ks
dyy

" #�1

: ð46Þ

We find that Ky returns to Kg on a time scale much shorter than
the time to steady-state plotted in Fig. 4. For example, with param-
eters of Fig. 2 and b = 0.035, the relaxation time of Ky is t�

� 6 � 10�7; for b = 0.017, it is �9 � 10�7 (however, note that these
times scales are still much greater than the Stokes relaxation time
sys ¼ 3� 10�13). Therefore, while possible, this ‘‘flash” enhance-
ment of the particle-phase conductivity is quickly followed by
strong inhomogeneities, it requires a strong temperature gradient,
it is ephemeral, and it only exists for particles of small material
conductivities or anomalously high thermophoretic coefficient.
Similar flash conductivity would also arise with negative
thermophoresis.

3.6. Ultrasonic mitigation

Our analysis suggests that ultrasounds can frustrate thermoph-
oretic particle migration, which is captured by the first term on the
right side of Eq. (36). Because oT�/ oy� ’ 1 and jTyj � �h, and because
particle diffusion vanishes at uniform m, the right side of Eq. (36) is
nearly balanced or, equivalently, m becomes invariant when ultra-
sounds are applied such that (ey 	 n) = �1 for b > 0 (or +1 for
b < 0) and

Pes ¼
jbjPr

�h
: ð47Þ

Fig. 5 plots the dimensionless time needed for the disappear-
ance of 99% of the initial volume fraction at any wall. If no ultra-
sounds are applied (Pes = 0), this takes t� ’ 38 for the relatively
modest thermopheretic coefficient b = 1.6 � 10�4 to wipe particles
off the hot wall at �h ¼ 7:5. When the ultrasonic terminal velocity is
raised, this depletion time increases, as particle migration gets
thwarted by the ultrasonic force. The time diverges to1 as Pes ap-
proaches the value prescribed in Eq. (47). When that value is ex-
ceeded, ultrasounds drive particles in the opposite direction, the
cold wall is now depleted, and the time to do so decreases with
increasing Pes.
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Fig. 5. Dimensionless time to deplete the volume fraction at a wall down to 1% of its
original value vs. Péclet number for the conditions of Fig. 2, (ey 	 n) = �1 and b > 0.
The vertical dashed line marks the value of Pes � 0.0032 in Eq. (47). To its left,
thermophoresis is stronger than ultrasonic forcing, and solids migrate away from
the hot wall. To its right, ultrasounds are stronger, and solids leave the cold wall.
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Unfortunately, conventional transducers might not be strong
enough to mitigate the thermophoretic migration of very small
particles. To achieve the Péclet number prescribed by Eq. (47),
one must supply the acoustic energy flux

I ¼ 90
11p3=2

jbjS2l5=2

f 3=2d3q3=2
g L�h

; ð48Þ

which rises steeply as d decreases. For example, 10 nm copper par-
ticles in ethylene glycol at 300 K with b = 1.6 � 10�4 in a channel
1 mm wide require I = 11 MW/m2 at f = 20 MHz to oppose
DT = 1 K, which is clearly impossible. Commercial transducers pro-
ducing [10 kW/m2 at 20 MHz can only reach Pes in Eq. (47) with
d J 100 nm.

For conditions typical of Fig. 2, the three terms in curly brackets
on the right side of Eq. (37) are much less important to the balance
of energy than the conduction term featuring ðKyg þ KysÞ. Therefore,
the role of thermophoresis is largely captured by Eq. (36), which
predicts the local evolution of m and the corresponding variations
of ðKyg þ KysÞ.

Figs. 3 and 5 also illustrate the role of settling diffusion with
dashed lines representing the solutions of Eqs. (36) and (37) with-
out Dym. As these figures show, settling diffusion merely delays ther-
mophoretic migration and the subsequent return to a thermal
steady-state.

In summary, suspensions of small particles in the diffusion limit
differ from their macroscopic counterpart by the existence of a
thermopheric coupling between temperature gradient and solid
volume fraction, which can create severe concentration inhomoge-
neities by moving solids toward cold (b > 0) or hot (b < 0) regions.
In principle, ultrasonic forcing can counteract this effect by fitting a
transducer on a hot wall. However, the required sonic energy flux
for nanoparticles generally exceeds the performance of available
ultrasonic systems. In channels with unidirectional rT, thermo-
phoresis acts as a settling force similar to gravity. If it is strong en-
ough, it can result in a significant enhancement of the self-diffusive
particle-phase conductivity, which suspensions at rT =rm = 0 do
not achieve with Brownian self-diffusion alone, but such enhance-
ment is ephemeral.

Because thermophoresis drives time-varying suspension inho-
mogeneities, we examine in the next section whether conventional
techniques like hot-wire conductimetry, which are meant for
homogeneous fluids of invariant properties, provide a reliable
measurement.
4. Hot-wire conductimetry

The conductivity measurement technique employed with most
nanoparticle suspensions is the transient hot-wire method, suit-
ably adapted to handle electrically-conductive liquids [63]. A con-
stant volumetric heat flow rate is produced by the Joule effect in a
thin cylindrical wire by switching on a constant electrical current
suddenly at time zero, while a known length of wire is immersed
in a fluid initially at the temperature T1. Because conductance of
the wire material is a linear function of temperature, the overall
resistance of the wire, which is recorded with a bridge, is a mea-
sure of its average temperature

Tw ¼
1

pr2
w

Z rw

r¼0
Tw2pr dr; ð49Þ

where r is the radial coordinate from the wire’s centerline and rw is
the radius of the electrically conductive wire core. Hot wire data is
commonly reduced by calculating the apparent conductivity

ka �
_q

4p
=

dTw

d ln t
; ð50Þ
in which _q is the heat supplied to a unit of wire length [6]. If this
measurement is carried out long enough after electricity is first
switched on, ka tends asymptotically to the invariant conductivity
of the homogeneous medium in which the wire is immersed. None-
theless, it would be imprudent to wait too long, since the rising
temperature could promote free convection that may augment
the apparent rate at which the wire loses heat [29].

In this problem, it is natural to introduce new dimensionless
variables, which, for convenience, we will denote with the same �

superscript used earlier. Thus in this section, we make time dimen-
sionless with the wire radius and the mixture thermal diffusivity at
the mean solid volume fraction, ty � �at=r2

w; radii dimensionless
with wire radius, r� � r/rw; thermal conductivities and diffusivities
with their mixture counterparts, ky � k=Kg, ay � a=�a; and temper-
ature with the mixture conductivity and the electrical heat rate
supplied per unit wire length, Ty � ðT � T1Þ2pKg= _q.

4.1. Role of insulating sheath

Carslaw and Jaeger [64] provided analytical expressions for a
wire of infinite conductivity, possibly protected by a sheath, and
immersed in a homogeneous medium. Without a sheath, the solu-
tion of Carslaw and Jaeger yields the apparent conductivity

kya ¼
p2

8P2ty

Z 1

i¼0

expð�tyi2Þ
i½ðiJ0 �PJ1Þ

2 þ ðiY0 �PY1Þ2�

,
; ð51Þ

where J0(i) and J1(i) are Bessel functions of the first kind, Y0(i) and
Y1(i) are Bessel functions of the second kind, and P � 2ðqcÞ=ðqwcwÞ
is twice the ratio of the specific heats per unit volume of the mix-
ture and that of the wire.

Nagasaka and Nagashima [63] derived expressions for a wire of
finite conductivity with a sheath for t� J o(1) after the onset of
electrical heating. Substituting their results in Eq. (50), we find

1

kya
¼ 1þ 1

2ty
kyp
ayp
� kyw

ayw
þ ry2p

ayp
ð1� kypÞ �

1
ayp
þ 1

2ayw

(

�
1� kyp

4kyw

 !
1
ayw
� 1

ayp

 !
� 2

1
ayp
� kyw

aywkyp

 !
lnðrypÞ

)

� 1
2ty

kyp
ayp
� kyw

ayw
þ 1�

kyp
ayp

 !
ry2p

( )
ln

4ty

expðcÞry2p

 !
; ð52Þ

where c ’ 0.577 is Euler’s constant. In this equation, the subscripts
p and w denote material properties of the sheath and the conduc-
tive wire core, respectively; and the outer radius of the sheath is rp.

As Nagasaka and Nagashima [63] noted, the presence of a
sheath, which is necessary to handle electrically conductive solids
[6], delays reaching the asymptote kya ! 1, paradoxically more so if
the sheath is made of a highly thermally conductive electrical insu-
lator (Fig. 6). Clearly, it is important to wait a sufficient time t�

J 1000 to reach the asymptote, and to report this time along
with thermal conductivity data. For the system shown in Fig. 6,
this represents about 4 s. Alternately, as Knibbe and Raal showed
[65], it is possible to exploit the time-history of Tyw at smaller
times to extract the fluid thermal conductivity and diffusivity
simultaneously.

During long measurements, small particles can be subject to
thermophoresis, which draws them away from the wire if b > 0.
If the wire was immersed in the suspension long enough to cause
particles to adhere to its surface, positive thermophoresis might
also resuspend these particles. Conversely, if b < 0, the suspension
might progressively densify at the wire, particularly if the applied
electrical power is large. We discuss next to what extent these phe-
nomena should be taken into consideration.
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4.2. Thermophoretic migration and resuspension

Ignoring ultrasonic forcing (vs = 0), as well as effects of radia-
tion, particle aggregation and electrophoresis, we substitute the
thermophoretic velocity in Eq. (33) for v and write Eqs. (25) and
(31) in the radial coordinate,

om
ot
¼ 1

r
o

or
r
mb
Rd

l
qg

o ln T
or

 !
þ 1

r
o

or
rDs

om
or

� �
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� �
; ð54Þ

where Ds = Dm + Ds–e.
Far away from the wire (r ?1), the fluid is at rest with

u = v = 0, m ¼ �m, T = T1, and Eq. (28) remains valid. For the boundary
condition at r = rw, we write the balance of mass and energy fluxes
at the wire surface projected along its normal er. For the mass,

J00 	 er ¼ ðqsmvþ j00s Þ 	 er ; ð55Þ

where J00 = J00er is a possible resuspension mass flux of particles pre-
viously adhered to the wire, which we only consider if b > 0, and

q ¼ hs½qsmvþ j00s � 	 er þ hg½qgð1� mÞuþ j00g� 	 er þ ðqs þ qgÞ 	 er;

ð56Þ

where q ¼ _q=ð2prwÞer is the radial electrical energy flux supplied by
the wire to the suspension. Using Eqs. (27), (28) and (55), and the
definitions of cs and cg, the energy boundary condition becomes

q ¼ �ðKg þ KsÞrT þ J00

qs

Z T

0
ðqscs � qgcgÞdT; ð57Þ

where, for compatibility with the expression for thermophoretic
velocity, the reference temperature of enthalpies is taken to be
absolute zero. It is interesting to note that, in the absence of a resus-
pension flux, such reference temperature need not be invoked, as
the term containing the temperature integral in Eq. (57) would van-
ish. In that event, thermophoresis would not affect the form of the
Fourier energy boundary condition either. For simplicity, we as-
sume that (qscs � qgcg) is invariant with temperature to carry out
the integral.

To estimate the magnitude of the resuspension flux with b > 0,
we assume that it is driven by the difference F = 3pld (vT � v) be-
tween the thermophoretic and Stokes forces working against the
attractive van der Waals force Fv = �[A132d/(12g2)]er acting on par-
ticles previously adhered to the wire surface. In this expression,
A132 is the Hamaker constant of particle of index 1 adhered to
the wire of index 2 in the liquid of index 3, and g is the gap be-
tween wire and particle [66]. We write that the energy per unit
time needed to liberate adhered particles from a unit surface of
the wire is supplied by the net force F as it detaches particles
and accelerates them from rest to the thermophoretic terminal
velocity,

J00

m

Z 1

g¼g0

A132
d

12g2 dg ¼ N
Z vT

v¼0
F dv; ð58Þ

where N is the surface number density of adhered particles and g0 is
the initial adhesion gap. Carrying out the integrals,

J00 ¼ 3p2qsd3Nlv2
Tg0=A132: ð59Þ

If no particle returns to adhere again to the wire, the supply of
adhered particles decreases with time according to dN/dt = �J00/m,
where N / J00 from Eq. (59). Assuming for simplicity that vT changes
slower than N, the surface number density decreases as

N ¼ N0 expð�t=sÞ; ð60Þ

where s ¼ A132=ð18plv2
Tg0Þ. For particles initially adhered in n‘ lay-

ers at a surface fraction ms, N0 = 4n‘ms/(pd2).
Adopting the reference time, radius, temperature, conductivi-

ties and diffusivities introduced earlier in this section, we write
Eqs. (53) and (54) in dimensionless form. For mass conservation,
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and for energy,
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subject to the initial conditions m ¼ �m and T� = 0 for t� < 0 and to the
boundary conditions m ¼ �m and T� = 0 as r� ?1. Substituting J00 from
Eq. (59), the boundary condition (55) for particle mass at r� = 1
becomes
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h1

 !
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" #
om
ory
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; ð63Þ

and its counterpart for mixture energy is
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Fig. 7. Excess (M� > 0) or deficit (�1 6M� < 0) of particle mass in the region 1 6 r�

6 2 vs. dimensionless time for the conditions �m ¼ 0:01, o(Kg/kg)/om = 3, Pr = 146, C�

= 0.78, Le1 = 3 � 10�5, and h1 = 490, corresponding to 10 nm particles of copper in
ethylene glycol at 300 K probed by a wire of 20 lm diameter at _q ¼ 1 W=m. For
such conditions, a unit interval in t� corresponds to 4.2 ms. To obtain these curves,
we discretized space in 3200 intervals in the range 1 6 r�

6 100. Solid lines
represent solutions of Eqs. (61)–(64) without settling diffusion, Dm = 0. Dotted lines
are obtained with Dym from Eq. (65) with L/rw = 50. The bottom two curves are
obtained with relatively strong positive thermophoresis, b = 0.035, for which the
particles behave like silica (ks = 1.4 W/m K) [34], and no prior particle adhesion,
n‘ms = 0. The curve labeled ‘‘resuspension” represents thermophoresis-driven
resuspension with b = 0.035 and Cr = 9.4, corresponding to A132 = 20 � 10�20 J,
g0 = 0.17 nm [66], and a 1 lm layer of initially adhered particles, n‘ms = 100. The
rising curve is for negative thermophoresis with b = �0.006 (Dm has negligible
effects in this case).
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in which the direction of thermophoretic resuspension is specified
by the sign of oT�/or�, and sy � s�a=r2

w is the dimensionless character-
istic time for resuspension of adhered particles. For b < 0, we
set J00 = 0 or, equivalently, we ignore the terms /Cr in Eqs. (63)
and (64).

We calculate Ks� in Eqs. (62) and (64) using Eq. (38). However,
unlike the parallel geometry in Section 3, thermophoresis around
the wire is no longer unidirectional. Thus it is unclear whether
the settling diffusion Dm described by Eq. (18) remains valid in
the presence of the central gradient rT directed toward the wire
axis. It is equally unclear which length scale should be substituted
for L in that equation. A crude assumption is to ignore the central
character of the thermophoretic force, to adopt Eq. (18), and to
equate L to the size of the container. In this case,
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As we shall see, this settling diffusivity has marginal effects on
hot-wire conductimetry, and thus it is not crucial to know its pre-
cise form for the central force field of interest.

Nine dimensionless numbers arise from Eqs. (61)–(66). They
are: �m, ns (or o(Kg/kg)/om), Pr, C�, a new Lewis number Le1 �
kbT1=ð3pld�aÞ, b, the dimensionless ambient temperature h1 �
2pKgT1= _q, the relative vessel size L/rw and, if thermophoresis-dri-
ven resuspension occurs with b > 0, Cr � n‘msdl2g0/(rwqgA132).
Thus, more particles will resuspend if Cr is large or, equivalently,
if the Hamaker constant is weak or if many particles have adhered
to the wire. Although Cr increases also with d, we expect the
thermophoretic driving force to become negligible once inertia
becomes important, in which case Eqs. (61)–(64) no longer apply.

We solve the governing equations using Matlab’s pdepe routine
in the domain r� 2 [1,R�] and over the period ty 2 ½0; tyf �. We choose
the outer limit R� of the radial domain such that the residual tem-
perature at R� is much smaller than at the wire surface, and that no
particle moving at the thermophoretic velocity can ever reach R�.
Because oT�/or� ’ �1 at r� = 1, these conditions imply Ry � 1þ
Tywðt

y
f Þ and Ry � jbjPrtyf=h1. We run numerical calculations at

successively smaller radial increments until further refinements
become inconsequential. Because the pdepe routine cannot handle
terms /(oT�/or�)2 in boundary conditions (63) and (64), we iterate
successive solutions in which the magnitude of these terms are cal-
culated from the previous iteration. We use Carslaw and Jaeger’s
analytical solution for the first iteration, and we stop when the
root-mean-square difference between the temperature time-histo-
ries at r� = 1 from two consecutive iterations is <10�5. Convergence
typically requires no more than five iterations. We enforce
m 2 [0,mc[ as outlined in Section 3. From the solution, we calculate
the apparent conductivity using the dimensionless form of Eq. (50),

1

kya
¼ 2

dTy

d ln ty

					
ry¼1

: ð67Þ
Figs. 7 and 8 illustrate the results. As Buongiorno [19] noted, the
terms proportional to (oT�/or�)2 and (om/or�)(oT�/or�) in Eq. (62) are
negligible compared with the last conduction term in the equation.
To gauge how thermophoresis affects the particle population in the
wire’s vicinity, we compute the relative excess or deficit of particle
mass M� in the region 1 6 r�

6 2,

My ¼
Z 2

ry¼1
ðm� �mÞ2pry dry

Z 2

ry¼1

�m2pry dry



; ð68Þ

and plot it versus time in Fig. 7. A deficit of particle has M� < 0; the
value M� = �1 represents clear fluid; an excess has M� > 0. Note that
settling diffusion has a modest effect on M�, just delaying the migra-
tion of particles away from the wire (dotted lines, Fig. 7). Moreover,
unlike its role in augmenting Kys for a short time in the parallel
channel of Section 3, ‘‘flash” settling diffusion has no discernable
influence on the time-history of kya from the hot wire, except
perhaps at t� < 10�2, which has no practical importance to this
measurement.

Figs. 7 and 8 distinguish two regimes of thermophoretic migra-
tion depending on the sign of b. For nominal properties of copper
nanoparticles in ethylene glycol (b = 0.26kg/(ks + 2kg) ’ 1.6 � 10�4),
positive thermophoresis causes negligible migration of solids away
from the wire, unless the measurement is carried out too long, t�

� 1000. If instead copper exhibited effective thermophoretic coef-
ficients as high as those suggested by Giddings et al. [34],
b ’ 0.035, then substantial deficits of solids could quickly appear
next to the wire. However, as Fig. 8 shows, such deficit would lead
to apparent conductivities ka that are lower, instead of higher, than
that of the base fluid, as kya ! kg=Kg < 1 as t� ?1.

Relatively strong particle resuspension could produce a tempo-
rary excess of solids near the wire, resulting in values of kya larger
than without thermophoresis at comparable times t� < 40. In spite
of this, resuspension should eventually exhaust the initial supply
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of adhered particles (Eq. (60), t� J 200). At that stage, the appar-
ent conductivity ka would dip below kg, and finally return to the
clear fluid asymptote as thermophoresis draws particles away from
the wire. Therefore, even if an exceptional number of particles had
previously fouled the wire, particle resuspension should only play
a minor role in the transient measurement. In general, if Eastman
et al. [6] waited long enough to record apparent conductivity, posi-
tive thermophoresis cannot explain the anomalous increase in keff

that they reported.
In contrast, negative thermophoresis has a more profound effect

on the apparent conductivity. As Figs. 7 and 8 show, the relatively
modest b = �0.006 can cause a densification of the mixture near
the wire, thus leading to a late upsurge of kya. However, because
thermophoretic diffusivity typically grows with T [39,41], and be-
cause temperature gradually rises in hot-wire conductimetry, b
may not remain negative at long times. On the other hand, because
the temperature at which b becomes >0 appears to increase with m
[40], b might remain <0 despite the growth of T near the wire. If it
does, then negative thermophoresis could be responsible for a sub-
stantial, albeit artificial, augmentation of the apparent conductivity
at long times. A similar artifact at long times may also arise from
the onset of free convection around the wire [29].

However, if hot-wire conductimetry properly accounted for the
role of the sheath in delaying approach to the asymptote (Fig. 6),
and if thermophoresis remained positive, explanations for the
thermal anomalies of metal nanoparticles must be found else-
where. Keblinski et al. [7] dismissed the role of ballistic phonons
and Xue et al. [16] that of liquid layering. Ben-Abdallah [17] dis-
missed near-field interactions. Prasher et al. [10] pointed out that
the interfacial resistance at the particle surface [67] should de-
crease keff. Our analysis of the diffusion limit in Section 2.2 agreed
with others [7,8,10,19] that Brownian diffusion of thermal energy
is also negligible. On the other hand, Vadasz et al. [18] suggested
that enhancements may be due to hyperbolic conduction. Leong
et al. [14] proposed that the ordered interfacial layer of liquid mol-
ecules at the solid surface could have much higher conductivity
than the base fluid, thus raising the effective volume fraction of
highly conductive material in the mixture.

Particle aggregation also plays an important role in nanofluids.
Lin et al. [68–70] described the fractal nature of colloid aggregates
and identified the universality of diffusion-limited and reaction-
limited regimes of aggregation. Prasher et al. [13] showed that
nanoparticles could form such fractal clusters occupying the frac-
tion ma of the suspension volume and exhibiting high effective clus-
ter conductivity kcl. In fact, Hong et al. [11] observed clusters on the
order of �1lm, which they could not dissolve completely by ultra-
sounds. For percolating metal clusters with nso 1, it is plausible
that connected particle chains would produce kcl/kg� 1, despite
the clusters’ relatively dilute internal volume fraction mcl and the
presence of interfacial Kapitza resistance at particle contact regions
[14,16]. With overall volume fraction m = mamcl, the mixture conduc-
tivity would then become Kg/kg ’ 1 + 3ma = 1 + 3m/mcl. Thus, the
presence of clusters with high intrinsic kcl could effectively rescale
volume fraction and raise the slope of o(Kg/kg)/om from 3 to
3/mcl.

It is unclear how thermophoretic forces would affect such frac-
tal clusters. However, the data of Putnam and Cahill [36,39] and
Vigolo et al. [43] suggest that b is independent of particle diameter.
Because the viscous settling of a cluster is typically set by its outer
size, the thermophoretic migration might be described by substi-
tuting that size wherever d appears in the dimensionless numbers
of Section 3.4.

5. Conclusions

We have examined the role of particle agitation in enhancing
the effective conductivity of fluid–solid suspensions. In Part I, we
showed that, because macroscopic grains rarely exchange signifi-
cant heat during their ephemeral collisions with each other and
with walls, the enhancement is a competition between two rate-
limiting processes, namely the ability of particles to self-diffuse
and to exchange heat with the surrounding fluid [1]. Accordingly,
we distinguished two regimes, called the ‘‘diffusion” and ‘‘ex-
change” limits, in which one or the other process dominates. In
Part II, we tested the theory in the exchange limit by vigorously
vibrating spheres in a box traversed by a controlled thermal heat
flux, and obtained a heat flux enhancement as high as a factor of
20.

In Part III, we illustrated the diffusion limit by considering the
transfer of heat through dilute suspensions of small colloidal
spheres in an incompressible liquid. In this regime, which is gov-
erned by diffusion, particles exchange, on average, negligible heat
with their surroundings, thus locally adopting the thermal temper-
ature of the fluid. They also exhibit Brownian agitation, which
could in principle enhance the thermal conductivity of the solid
phase. However, unlike massive grains having a self-diffusive con-
ductivity weakly dependent on particle concentration, the particle
conductivity associated with Brownian self-diffusion is propor-
tional to solid volume fraction, thus making the resulting enhance-
ment too small to matter. Unlike the macroscopic grains
considered in Part II, the Brownian motion of nanoparticles is not
sufficient to agitate the surrounding fluid and augment its effective
conductivity either [28].

On the other hand, for small particles, the existence of macro-
scopic temperature gradients induces a thermophoretic migration
of solids [32], which prevents the mixture from achieving a steady
homogeneous concentration. In cases where the temperature gra-
dient is uniform, the thermophoretic force causes a hindered set-
tling resembling sedimentation and similarly provoking an
additional diffusion [57], the magnitude of which can exceed its
Brownian counterpart. Through volume conservation, the ther-
mophoretic advection and settling diffusion cause reverse fluxes
in the fluid, even in a suspension globally at rest. Therefore,
although the fluid–solid mixture possesses a single thermal tem-
perature, one should distinguish the thermal governing equations
of the two phases, which exhibit different advection velocities
and diffusion fluxes.
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As Putnam et al. showed [37,39], thermophoresis can drive par-
ticles to regions that are cold (b > 0) or hot (b < 0), depending on
solvent composition, temperature, and volume fraction [40]. If
thermophoresis is intense, for example with particles having rela-
tively low material conductivity, or with metal particles with
anomalous surface potential distribution [34], the thermophoretic
settling diffusion can induce a particle-phase ‘‘flash” conductivity
augmenting significantly the mixture conductivity captured by
homogenization models [22]. However, this enhancement is
ephemeral, as thermophoresis inevitably creates inhomogeneities
in particle concentration.

Our calculations suggested a technique to oppose particle ther-
mophoretic migration by placing an ultrasonic transducer emitting
progressive acoustic waves from a hot wall [47]. Unfortunately,
such ultrasonic relief of thermophetic migration is only conceiv-
able for solids larger than typical nanoparticles. We also estimated
that the self-diffusion associated with ultrasonic particle fluctua-
tion velocity is small compared with the settling diffusivity driven
by ultrasonic particle advection.

We also considered how the gradual migration of nanoparticles
away from hot surfaces affects the reliability of transient hot-wire
conductimetry, which is meant for homogeneous fluids of invari-
ant properties. We recalled that an electrically-insulating sheath
causes a delay in the time needed for the apparent thermal con-
ductivity to reach its asymptote [63], thus implying that wire mea-
surements with conductive nanoparticles be carried out at long
times, but not too long for free convection to play a role [29],
and not with excessive electrical power that positive thermophore-
sis may deplete (or negative thermophoresis augment) the particle
population at the wire. In this context, because time scales as wire
radius squared, we recommend that hot-wire conductimetry data
be reported together with measurement time delay, electrical
power, wire geometry [71], and solvent composition [37].

We showed that, as positive thermophoresis depletes the particle
population near the wire, it should reduce the long-time asymptotic
value of the apparent conductivity. Thus, the anomalous increase in
the long-term hot-wire conductivity of metal nanoparticles [6] can-
not be attributed to positive thermophoresis, unless measurements
were carried out too soon. We also examined whether the resuspen-
sion of particles previously adhered to the wire played any role.
While such resuspension by positive thermophoresis could create
a temporary increase in apparent conductivity, the gradual depar-
ture of particles from the wire and its vicinity should again result
in a smaller apparent long-term conductivity, thus making it unli-
kely, once again, for positive thermophoresis to be responsible for
anomalous hot-wire conductivity measure- ments.

However, we showed that negative thermophoresis, which can
occur, for example, in aqueous suspensions of charged polystyrene
spheres at relatively low ionic strength or temperature [37], could
let the apparent hot-wire conductivity rise at long times due to
particle migration toward the wire. Finally, we recalled the conclu-
sions of others [68–70] that nanoparticle clustering likely plays an
important role in the transport properties of nanofluids, including
thermal conductivity.
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